8 research outputs found

    3D-Printed Hermetic Alumina Housings

    Get PDF
    Ceramics are repeatedly investigated as packaging materials because of their gas tightness, e.g., as hermetic implantable housing. Recent advances also make it possible to print the established aluminum oxide in a Fused Filament Fabrication process, creating new possibilities for manufacturing personalized devices with complex shapes. This study was able to achieve integration of channels with a diameter of 500 m (pre-sintered) with a nozzle size of 250 m (layer thickness 100 m) and even closed hemispheres were printed without support structures. During sintering, the weightbearing feedstock shrinks by 16.7%, resulting in a relative material density of 96.6%. The well-known challenges of the technology such as surface roughness (Ra = 15–20 m) and integrated cavities remain. However, it could be shown that the hollow structures in bulk do not represent a mechanical weak point and that the material can be gas-tight (<1012 mbar s1). For verification, a volume-free helium leak test device was developed and validated. Finally, platinum coatings with high adhesion examined the functionalization of the ceramic. All the prerequisites for hermetic housings with integrated metal structures are given, with a new level of complexity of ceramic shapes available

    3D-Printed Hermetic Alumina Housings

    No full text
    Ceramics are repeatedly investigated as packaging materials because of their gas tightness, e.g., as hermetic implantable housing. Recent advances also make it possible to print the established aluminum oxide in a Fused Filament Fabrication process, creating new possibilities for manufacturing personalized devices with complex shapes. This study was able to achieve integration of channels with a diameter of 500 &micro;m (pre-sintered) with a nozzle size of 250 &micro;m (layer thickness 100 &micro;m) and even closed hemispheres were printed without support structures. During sintering, the weight-bearing feedstock shrinks by 16.7%, resulting in a relative material density of 96.6%. The well-known challenges of the technology such as surface roughness (Ra = 15&ndash;20 &micro;m) and integrated cavities remain. However, it could be shown that the hollow structures in bulk do not represent a mechanical weak point and that the material can be gas-tight (&lt;10&minus;12 mbar s&minus;1). For verification, a volume-free helium leak test device was developed and validated. Finally, platinum coatings with high adhesion examined the functionalization of the ceramic. All the prerequisites for hermetic housings with integrated metal structures are given, with a new level of complexity of ceramic shapes available

    Subretinal electrical stimulation reveals intact network activity in the blind mouse retina

    No full text
    Retinal degeneration (rd) leads to progressive photoreceptor cell death, resulting in vision loss. Stimulation of the inner-retinal neurons by neuroprosthetic implants is one of the clinically approved vision-restoration strategies, providing basic visual percepts to blind patients. However, little is understood as to what degree the degenerating retinal circuitry and the resulting aberrant hyperactivity may prevent the stimulation of physiological electrical activity. Therefore, we electrically stimulated ex vivo retinas from wild-type (wt; C57BL/6J) and blind (rd10 and rd1) mice using an implantable subretinal microchip and simultaneously recorded and analyzed the retinal ganglion cell (RGC) output with a flexible microelectrode array. We found that subretinal anodal stimulation of the rd10 retina and wt retina evoked similar spatiotemporal RGC-spiking patterns. In both retinas, electrically stimulated ON and a small percentage of OFF RGC responses were detected. The spatial selectivity of the retinal network to electrical stimuli reveals an intact underlying network with a median receptive-field center of 350 μm in both retinas. An antagonistic surround is activated by stimulation with large electrode fields. However, in rd10 and to a higher percentage, in rd1 retinas, rhythmic and spatially unconfined RGC patterns were evoked by anodal or by cathodal electrical stimuli. Our findings demonstrate that the surviving retinal circuitry in photoreceptor-degenerated retinas is preserved in a way allowing for the stimulation of temporally diverse and spatially confined RGC activity. Future vision restoration strategies can build on these results but need to avoid evoking the easily inducible rhythmic activity in some retinal circuits

    Polyimide-based Thin Film Conductors for High Frequency Data Transmission in Ultra- Conformable Implants

    No full text
    Application-specific integrated circuits (ASICs) embedded in polymers have been subject in implant manufacturing for the recent years. The increased functionality combined with good biocompatibility due to flexibility of thin implants makes them interesting for further studies. Thin-film ASICs can be used for the recording and processing of a high amount of biological signals, improving the performance of neural implants. Fabrication and analysis of gold and platinum thin-film connections are subject of this study, especially their capability as high frequency data transmission lines. Three layers of polyimide are used as flexible substrate and insulator of the traces. Various test structures were designed and fabricated, to investigate the resistance and reactance up to GHz frequencies, crosstalk and influence of vias between metallization layers. All conducting structures have a comparable design with a length of 50 mm and a metal thickness of 300 nm, while the line widths were varied. In this configuration gold and platinum thinfilm conductors are both suitable for high-frequency data transmission up to 100 MHz. This transmission frequency limit and impedances are unaffected by a wet environment and in accelerated aging tests. However, both metals show a high pass filter behavior, whose frequency behavior is mostly dependent by the self-inductance and resistance. A simplified ideal transmission model predicts the electrical behavior sufficiently and can be used to design the favored line impedance matching input impedances of the connected ASICs

    Highly Porous Platinum Electrodes for Dry Ear-EEG Measurements

    No full text
    The interest in dry electroencephalography (EEG) electrodes has increased in recent years, especially as everyday suitability earplugs for measuring drowsiness or focus of auditory attention. However, the challenge is still the need for a good electrode material, which is reliable and can be easily processed for highly personalized applications. Laser processing, as used here, is a fast and very precise method to produce personalized electrode configurations that meet the high requirements of in-ear EEG electrodes. The arrangement of the electrodes on the flexible and compressible mats allows an exact alignment to the ear mold and contributes to high wearing comfort, as no edges or metal protrusions are present. For better transmission properties, an adapted coating process for surface enlargement of platinum electrodes is used, which can be controlled precisely. The resulting porous platinum-copper alloy is chemically very stable, shows no exposed copper residues, and enlarges the effective surface area by 40. In a proof-of-principle experiment, these porous platinum electrodes could be used to measure the Berger effect in a dry state using just one ear of a test person. Their signal-to-noise ratio and the frequency transfer function is comparable to gel-based silver/silver chloride electrodes
    corecore